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Abstract

Hydrodynamic and thermal analysis of suspension flows is a difficult but fundamental task for the sterilization prob-

lems of particle charged fluids in food industries and also in any process where we can find flow with seeded particles.

Nowadays, the influence of solid suspended particles on the flow is not yet a well known problem. Nevertheless, the

solid particles have a strong influence on the rheological mixture�s behaviour. The new approach of these solid–liquid

suspension flows that we propose is based on experimental data and theoretical considerations. We use hard sphere

approach in order to model the pressure drop assuming the mixture as an effective continuous medium. On these bases,

we present a model of the heat transfer at the wall.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Most of the fluids or mixtures that are produced by

the food industries have a complex rheological behav-

iour. The knowledge of all their properties is essential

to model different stages of the process. The product is

pumped, heated, cooled and finally conditioned. During

the process, it undergoes several physical and chemical

transformations while it will be transformed. Hydrody-

namic and thermal analysis of Newtonian and non-

Newtonian suspension flows is a fundamental task for

the sterilization of fluids charged with solid. Nowadays,
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the solid particles influence on the flow is not yet well

known. Nevertheless, this influence determines the mix-

ture�s rheology, that is to say all the thermal and

mechanical problems encountered during the process.

We can easily find a lot of works on solid–liquid flow

in the literature; the usual approach of this com-

plex problem consists in taking account of all of the phe-

nomena (particle–particle interaction, particle–liquid

interaction, wall–liquid interaction and wall–particle

interaction) in order to be able to solve the transport

and energy equations. But this is still an open problem

due to its complexity.

Several studies on flow and heat transfer have been

conducted in the past. Durand [1] and Kyokay [2] de-

fined four main patterns for the horizontal flow of sus-

pension depending on the shape and size of particles,

velocity of the mixture, volume concentration of the

solid phase, diameter of the pipe, viscosity of the liquid,
ed.
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Nomenclature

Cp specific heat (J/kg K)

D diameter of the test section (m)

h(z) local heat transfer coefficient (W m�2 s�1)

k thermal conductivity (W m�1 K�1)

L total length of the test section (m)

LT length of thermal establishment

_m mass flow rate (m3 s�1)

Te entry temperature (K)

Tm(z) mean temperature (K)

Tw(z) local wall temperature (K)

Ud mean velocity (m s�1)

z abscissa

Dimensionless numbers

Cf friction factor

Gz mean Graetz number, Gz ¼ _m � Cp=k � L
Nu(z) local Nusselt number, Nu(z) = h(z) Æ D/k

Nu mean Nusselt number, Nu ¼ 1
L�LT

R L
LT
NuðzÞdz

Pr Prandtl number of the fluid, Pr = l Æ Cp/k

Preff effective Prandtl number of the suspension,

Preff = leff Æ Cp/k

Re Reynolds number, Re = q Æ Ud Æ D/l
Reeff effective Reynolds number, Reeff = q Æ

Ud Æ D/leff
Resing Reynolds number based on the viscosity of

the suspending fluid, Resing = q Æ Ud Æ D/l0
X+ Cameron number, X+ = 2 Æ z/D Æ Re Æ

Pr = 2 Æ z/D Æ Pe

Greek symbols

DP pressure drop (Pa)

U volume suspension fraction

Up random packing fraction (/p � 0.637)

uw wall heat flux (W m�2)

l dynamic viscosity (Pa s)

l0 dynamic viscosity of the liquid (Pa s)

leff dynamic viscosity of the suspension (Pa s)

lr relative viscosity

q mass volume (kg m�3)
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specific weight of the liquid and solid. These regimes are

the so called symmetric, asymmetric, moving bed and

stationary bed and they essentially depend on the sedi-

mentation velocity of the solid phase. For each pattern,

a law can be defined for the prediction of pressure drop.

It seems to be very important to know the pattern be-

cause the velocity field is greatly influenced by it and

thus the dynamic and thermal boundary layers. That is

the reason why several authors were interested in study-

ing the relations between the radial concentration, the

velocity field and the heat transfer at the wall. Ayukawa

[3] gave a model for the turbulent velocity field of a het-

erogeneous mixture of solid particles in water flowing

between two parallel planes. The velocity field is given

as a function of the radial solid concentration. Furuta

et al. [4] reported that the radial concentration is a func-

tion of the size, density of particles and liquid velocity as

well. Mills and Snabre [5] proposed a model based on

lubrication forces. Their model clearly shows that there

is, as expected experimentally, a peak of concentration

in the middle of the flow. However the solid concentra-

tion is lower in the immediate vicinity of the wall and the

motion of these particles will greatly disturb the thermal

boundary layer. In a recent study, Hestroni et al. [6]

experimentally showed the effect of particle motion and

rotation on the temperature distribution and on the heat

transfer.

Sure, all these studies are very interesting because

they propose models based on physical considerations.

The aim of present study is not to propose a flow model
similar to previous studies. Some models can be applied

to predict friction laws and heat transfer. The flow of

Newtonian or non-Newtonian liquids charged with

equal density hard spheres is studied here. The dimen-

sions of the particles are not negligible compared with

those of the tube (0.1–0.2 typically). In the first part of

the study, we show that the pressure drop can be mod-

elled using a simple expression of the effective viscosity

of the mixture given by Quemada [7]. In the second part,

the experimental local heat transfer coefficients are com-

pared to the classical laws; all these experiments allow us

to propose a physical explanation of the heat transfer

for charged flows.
2. Experimental set-up

2.1. Flow loop and test section

The schema of the loop used in these experiments is

shown in Fig. 1. The mixture (solid–liquid) is supplied

from a tank and circulates thanks to a centrifugal pump.

After the mixture has passed through the test section, it

is collected downstream in the main tank. The tempera-

ture of the solid–liquid suspension is kept constant at the

entrance of the test section thanks to an upstream heat

exchanger. The role of the upstream secondary tank is

to dissipate all the pulsations generated by the centrifu-

gal pump. The mixture flow rate is measured thanks to

an electromagnetic flowmeter.
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Fig. 1. Schema of the flow loop.
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The test section was located at a distance of 2.3 m

from the exit of the secondary tank in order to ensure

that the flow was established at its entrance. The test sec-

tion consists of a heated copper pipe, diameter 0.03 m,

length 2.15 m, instrumented with 58 thermocouples in-

serted flushed to the wall. These thermocouples allow

measurements of the wall temperature as a function of

the axial distance from the entrance of the test section.

The heating of the copper pipe is ensured by a set of

electric resistance which are coiled around the pipe.

These electric resistances can supply a maximum wall

heat flux of about 15000 W/m2 (see Fig. 2). The data

acquisition system is a AOIP system (SAM 70). A differ-

ential pressure transducer measures the global pressure

drop. In Table 1, we give the exact location of each

thermocouple.

2.2. Mixture

The Newtonian liquid phase we used was an aqueous

solution of glucose at different concentrations. The vis-

cosity of these solutions varied from 0.001 Pa s (water

viscosity) to 0.06 Pa s. The non-Newtonian liquid is an

aqueous carboxymethylcellulose solution (CMC). The

rheology of suspended fluids has been quantified using

a stress controlled rheometer adapted with a plate and
cone geometry (diameter = 6 cm; aperture angle = 2.1�).
Rheograms of CMC are modelled with the following

law:

l ¼ l0

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.032 � _c

p ð1Þ

where l0 = 0.315 is the viscosity of CMC (20 �C) at zero
shear stress.

The Reynolds number is calculated using this viscos-

ity (l). The generalized Reynolds number of Metzner–

Reed is not used in this study.

The solid phase is constituted by alginate hard

spheres. These spheres are obtained by the fall (drop

by drop) of an aqueous solution of alginate in another

aqueous solution of CaCl2; this last solution is used in

order to ensure the polymerisation of the alginate drop.

In Table 2, we summarize the essential physical prop-

erties of each phase.
3. Experimental results

3.1. Rheology—pressure drop

In the case of charged suspensions, the measure of

the rheological properties can be a problem using a



Fig. 2. Details of the heated test section.

Table 1

Location of the TC

TC number 1 2 3 4 5 6 7 8 11 12 13 14

z (mm) 15 28 188 188 188 188 260 340 370 383 543 543

TC number 15 16 17 18 21 22 23 24 25 26 27 28

z (mm) 543 543 615 695 725 738 898 898 898 898 970 1050

TC number 31 33 34 35 36 37 38 41 42 43 44 45

z (mm) 1080 1253 1253 1253 1253 1325 1405 1435 1448 1608 1608 1608

TC number 46 47 48 51 52 53 54 56 57 58

z (mm) 1608 1680 1760 1790 1803 1963 1963 1963 2035 2115

Table 2

Physical properties of each phases

q (kg m�3 ) k (W m�1 K�1) Cp (J kg
�1 K�1)

Water 1000 0.6 4180

Pure glucosic solution 1437.1 0.404 4180

CMC 888.25 0.6 4180

Alginate particle 1052.2 – –
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classical rheometer. In our case, the solid particles

have a mean diameter of about 4.4 mm so we cannot

measure the mixture�s properties using a stress-con-

trolled rheometer.

The other method to measure these properties is to

measure the global pressure drop; the rheological prop-

erties of the mixture will be determined assuming some
hypotheses. If we make the assumption that our mixture

behaves like a Newtonian equivalent fluid for example, it

is easy to refer to an equivalent viscosity for each

particle concentration. But this method is questionable

because there is no sufficient reason to act that the

solid–liquid mixture is an equivalent Newtonian fluid:

the radial solid concentration is not constant so the vis-
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cosity of the mixture will evolve on a radius. Newitt

et al. [8] gave a simple expression of the pressure drop

in the case of a moving bed. For other regimes like sym-

metric or asymmetric ones, most authors considered the

mixture as an equivalent fluid (Newtonian or not). The

works of Cheng [9] are concerned with non-Newtonian

fluids and these authors studied the flow of finest disper-

sion like paint. However the most common way to mod-

el pressure drop for solid–liquid flow is to express the

two-phase pressure drop as a function of the single-

phase one. That is the case of several works like those

of Cheng [9] as well, Kemblowski et al. [10], Takahashi

[11], Chhabra [12] and Hoareau [13].

If we take a look at the different rheological models

suitable for suspension of hard spheres, we can men-

tioned of course the model of Einstein [14] which is valid

for dilute suspensions (U < 0.5%) but in our cases the

solid concentration is always greater than this limit.

Krieger [15] give available model for the effective mix-

ture viscosity (liquid can be Newtonian or not) as a func-

tion of the liquid viscosity and the volume concentration

of the solid phase:

leff ¼ l0 1� /
/P

� ��q

ð2Þ

where UP is the packing fraction.

Quemada [7] takes the value of 2 for the q exponent.

Let us precise that all these works have been validated

for micrometric particles and not yet for millimetric par-

ticles although there is no theoretical considerations

which prevent to transpose this law for millimetric par-

ticles. In Fig. 3, the viscosity of our mixture determined

through pressure drop–flow rate relationship for homo-

geneous fluids is in very good agreement with Quemada

[7] law. Validation of the Quemada model has been

made using a glucose solution (Newtonian fluid with

l = 0.06 Pa s). The Reynolds number based on the vis-

cosity of the carrier fluid is equal to 934.
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Fig. 3. Evolution of the relative viscosity versus the solid

concentration—Resing = 934.
The estimation of pressure drop for solid–liquid flow

has been widely studied in the past. In this work, we con-

sider our mixture as an effective fluid. In Fig. 4, we pres-

ent the evolution of the solid–liquid friction coefficient

as a function of the effective Reynolds number for sev-

eral concentrations of particles (volume concentration).

For laminar flow, the experimental points are supposed

to fit the 16/Re curve. The Blasius law is the reference

for turbulent flow (0.316 * Re�0.25). These curves have

been obtained in the case of Newtonian liquid (water

and glucosic suspensions) and non-Newtonian ones

(CMC). We can noticed that all the experimental points

are located on master curves independent of suspension

concentration, this means that the chosen parameters

(Reynolds number constructed with the effective viscos-

ity) are the appropriate ones to describe the pressure

drop of such mixtures. In fact, the effective viscosity

takes into account all the dissipations induced by the

particles interacting each other, the particles interacting

with the fluid, . . . So the dissipation measured by the way

of the pressure drop on a given length of the pipe inte-

grates all of these dissipations and not only the viscous

dissipation at the wall. In the case of a Newtonian sus-

pending phase, the laminar–turbulent transition is very

smooth and the experimental points leave the theoretical

laminar curve for a Reynolds number around 1000. This

advanced transition is due to the particle–particle inter-

action inducing finite size perturbations. In the case of

a pseudoplastic liquid, this transition is classically re-

tarded because of higher shear rates near walls due to

its shear-thinning behavior.

Our approach allows a significant simplification of

the classical laws for mixtures: one only needs to know

the (eventually non-Newtonian) viscosity of the liquid

phase, the exact value of the solid phase concentration

and the value of the packing fraction. To describe the

pressure drop of any solid–liquid mixture, there is no

need of others additional parameters such as the ratio

between the characteristic dimension of the solid phase

and the pipe diameter, shape of the solid phase, . . .

3.2. Heat transfer

3.2.1. Preliminary calculations

The local heat transfer coefficient was calculated as:

hðzÞ ¼ uw

T pðzÞ � TmðzÞ
ð3Þ

where uw is the wall heat flux density. It is supposed to

be constant over all the pipe length; the axial conduction

in the z-direction is assumed to be zero. Tw(z) is the local

surface temperature at the z abscissa; Tm(z) is the mean

temperature of the fluid at the z abscissa. This tempera-

ture is obtained by a balance between the total heat flux

transferred from the entrance of the pipe to the z

abscissa:
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TmðzÞ ¼ T e þ
p � D � uw � z

_m � Cp
ð4Þ

So, the local Nusselt number can be defined as:

NuðzÞ ¼ hðzÞ � D
k

¼ uw � D
k � ðT pðzÞ � TmðzÞÞ

ð5Þ

The thermal conductivity is estimated at the mean

temperature of the fluid, Tm(z).

The entrance temperature Te is adjusted at 20 �C with

an uncertainty of about 0.1 �C. The surface averaged

heat flux density is calculated from the measured electric

power supplied by the coiled resistance. Finally, a stan-

dard uncertainty analysis indicates that the uncertainty

in the heat transfer coefficient was of the order of 10%.

3.2.2. Influence of the Reynolds number and heat flux

density

Experiments have been carried out for different Rey-

nolds numbers and different heat density fluxes both for

single-phase and solid–liquid flows. Fig. 5 shows the re-

sults of experiments in the case of single-phase flow; for

laminar flow, there is a very good agreement between the

experimental results and the correlation established by

Mizushina [16] and modified by Moudachirou [17]:

NuðzÞ ¼ 1.64 � � dl
ldT

� �
uw � D
2 � k

� �0.14
� ðXþÞ�1=3 ð6Þ

In the case of higher Reynolds numbers (Re = 2787),

the Nusselt number shows a particular evolution along

the pipe. It is decreasing in the entrance part of the pipe

as predicted by Eq. (6) and then remains constant until

the exit. This is typical of a flow transition between lam-

inar to turbulent regimes. While the thermal boundary
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layer is confined in the viscous sub-layer, it can grow

normally, but when its thickness reached the turbulent

core, its growth is brutally stopped by the turbulent dif-

fusivity. That is why the Nusselt number remains con-

stant. The previous correlation (Eq. (6)) is not valid

anymore; the only one that can be used now is the one

established for turbulent flows by Chilton and Colburn

[18]:
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The thermal dependence of the fluid is correctly

taken into account by the Mizushina�s correction of

Eq. (6) (Fig. 6).
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3.2.3. Influence of the volume fraction

The influence of the particle volume fraction is clearly

highlighted in Fig. 7. If we compare the evolution of the

local Nusselt number for single-phase case and two-

phase case (3%) for the same Reynolds (Re = 1499),

we can notice that not only the Nusselt number increases

but it remains constant for a Cameron number of about

10�4 (Fig. 7a): the transfer is like a turbulent one. When

the Reynolds number increases (Fig. 7b), the turbulent

transfer arises at a distance from the entrance of the pipe

as much shorter as the Reynolds number is high. The

local Nusselt number increases as the volume fraction

is increased (Fig. 8). But we can noticed that the Nusselt

number evolution is the same that in the case of a single

phase turbulent flow, even when the flow is laminar.

Naturally, when the volume fraction is increased, the

Nusselt number is increased as well (Fig. 9) because

the turbulence effects are as much greater as the volume

fraction is high. As the mixture rate is measured thanks

to an electromagnetic flowmeter, Ud (the velocity of the

mixture) is closed to the velocity of the liquid for weak

values of the mass concentration.

3.2.4. Mean Nusselt number

The evolution of the mean Nusselt number can be

modelled by taking into account in relation (6) the Rey-

nolds number based on the effective viscosity (Fig. 10a)
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Fig. 11. Schema of the thermal mec
or based on the viscosity of the suspending fluid (Fig.

10b). In the case of a laminar flow, the Kays�s [19] rela-
tion can be used:

Nu ¼ 1.41 � Gz1=3 ð8Þ

In Fig. 10a, the evolution of the mean Nusselt num-

ber is reported versus the effective Reynolds number. As

we can see, the Nusselt number is still a function of both

the mass particles concentration and the Reynolds num-

ber. When the Nusselt number is reported as a function

of the single-phase Reynolds number, all the results

seem to be only dependant on this parameter.

Regarding the expansion of the thermal boundary

layer can explain the process. In the laminar case, the

thermal boundary layer can grow and when its thickness

reached the centre of the pipe the thermal regime is con-

sidered as established, so the Nusselt number will remain

constant. In the case of a turbulent flow, the thermal

boundary layer can grow while it is confined in the vis-

cous sub-layer, but when its thickness reach the turbu-

lent core, the turbulent diffusivity stops brutally this

growth. The case of solid–liquid flow is very similar to

the turbulent one. Near the wall, the local particle vol-

ume fraction is so low that we can consider that there

is an annular single-phase ring where there is no parti-

cles; so, the thermal boundary layer can grow normally

until it is stopped by the particle�s core where the diffu-
stopped by particles diffusivity

T

Expansion of the thermal
Laminar boundary layer

T

Expansion of the thermal 
boundary layer stopped by

Turbulent diffusivity T
Viscous sub -layer

by particles diffusivity

T
xpansion of the thermal boundary layer

stopped by particles diffusivity

T

hanisms in solid–liquid flows.
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sivity due to the interactions between particles and the

liquid phase plays a similar rule as the turbulent diffusiv-

ity. These mechanisms have been schematically summa-

rized in Fig. 11.
4. Concluding remarks

In the present paper, a series of experiments of forced

convection heat transfer in a horizontal circular pipe for

solid–liquid mixtures were conducted. The analysis of

the pressure drop leads us to a significant simplification

of the approach of heterogeneous suspensions. The use

of the effective viscosity in order to calculate the Rey-

nolds number can be used for pressure drop predictions.

Furthermore, in the case of heating, the classical laws

established in the case of single phase flows are still valid

in the case of solid–liquid flows; the experiments show

that there is a good agreement while the flow is laminar

and the thermal regime is not established. The Chilton–

Colburn relation is valid for solid–liquid flows; the Rey-

nolds number must be calculated using the viscosity of

the suspending phase alone.
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